

ASTRA SPACECRAFT ENGINE KRYPTON/XENON PROPULSION SYSTEM

VERSION 04 | JUNE 2022

FIGURE 1. ASE OPERATION WITH XENON

The Astra Spacecraft Engine (ASE) is a Hall-effect thruster propulsion system which leverages the past 50 years of Hall thruster research in a clean sheet design with major innovations, including:

- Compatible with xenon and krypton propellants
- Heaterless, center-mounted, instant-start cathode
- Novel magnetic lensing and magnetic circuit
- Advanced high temperature materials
- 95% efficient single board PPU

	KRYPTON	XENON
INPUT POWER	400 W	400 W
INPUT VOLTAGE (PRIMARY)	28 VDC unregulated	28 VDC unregulated
THRUST	~18 mN	~25 mN
SPECIFIC IMPULSE	~1,300 s	~1,400 s
TOTAL IMPULSE	300 kN-s	300 kN-s
DESIGNED & MANUFACTURED IN	USA	USA

TABLE 1. SYSTEM SPECIFICATION SUMMARY

SUBSYSTEM COMPONENTS

THRUSTER

ASE includes a thruster which has been tested from 280 W up to 600 W and is configured for operation at 400 W to the PPU.

KEY FEATURES

- Compatible with xenon and krypton propellants
- Heaterless, center-mounted, instant-start cathode
- Novel magnetic lensing and magnetic circuit
- Advanced high temperature materials
- Designed for multi-thruster operation
- Thruster can operate between 300 W and 500 W to PPU (System optimized for 400 W operation)

FIGURE 2. ASE THRUSTER

	KRYPTON	XENON
POWER	400 W	400 W
THRUST	~18 mN	~25 mN
SPECIFIC IMPULSE	~1,300 s	~1,400 s
TOTAL IMPULSE	300 kN-s	300 kN-s
THRUSTER MASS	1.0 kg	1.0 kg
THRUST VECTOR ANGLE	±1degree	±1degree

TABLE 2. THRUSTER SPECIFICATIONS

PPU

The ASE PPU provides power and control to the ASE thruster, valves, regulator, and pressure transducers. Astra has a radiation hardened PPU: The PPU is designed for 25 kRad TID and no Destructive SEEs at less than 38 MeV.cm²/mg.

HIGH VOLTAGE IGNITER	Regulated supply operated during thruster activation
VALVE AND PRESSURE TRANSDUCER SUPPLIES	Regulated supplies provide power to actuate the ASE system pneumatic valves and operate the subsystem pressure transducers
DISCHARGE CONVERTER	Regulated main power supply to the ASE thruster
INPUT VOLTAGE	28 VDC unregulated input required for thruster, feed system and housekeeping circuits
PPU MASS	1.5 kg
EFFICIENCY	95%

TABLE 3. PPU SUMMARY (RADIATION HARDENED PPU)

PROPELLANT STORAGE AND MANAGEMENT ASSEMBLY (PSMA)

Astra provides xenon/krypton propellant feed systems with flight heritage. Astra has baselined a Xenon/Krypton PSMA with a single string bang-bang regulator with orifice flow split for cathode, anode, and ignition flow.

This PSMA consists of a Propellant Management Assembly (PMA), a Xenon Flow Control (XFC), and carbon overwrapped pressure vessel (COPV) for propellant storage.

PROPELLANT MANAGEMENT ASSEMBLY (PMA)	SERVICE VALVES: Fill and drain
	PRESSURE TRANSDUCERS: Propellant gauging
	SYSTEM FILTER: 25 micron absolute
	NORMALLY CLOSED VALVE: High pressure isolation valve, primary inhibit to internal leakage (option for parallel redundancy)
	LATCHING VALVES: High pressure isolation valve, secondary inhibit to internal leakage
	PROPORTIONAL CONTROL VALVE: Produce required mass flow for the thruster
XENON FLOW CONTROL (XFC)	SOLENOID VALVES: Low pressure isolation and flow control to each thruster
	ORIFICE : Restrict flow to provide required mass flow split between anode and cathode

TABLE 4. XENON/KRYPTON PSMA SUMMARY

ORIFICE FLOW SPLIT	Three orifices to control flow for anode, cathode and ignition flow. Ignition flow is operated for a short duration at startup using a low pressure latch valve.
INHIBITS	Two inhibits that prevent propellant leak: 1) Normally closed valve and latching solenoid valves in series between tank and thruster. 2) Service valve for fill and drain of propellant. The unit has a metal to metal seat and valve cap acts as a second seal.
PRESSURE	High pressure side rated for MEOP of 4,000 psia at 60 °C; proof 6,000 psia; burst 10,000 psia
REDUNDANCY	Parallel redundancy of high pressure valves and regulators within the PMA
LEAKAGE	Internal leakage shall be less than 8.33 x 10 -4 sccs and external leakage less than 1.0 x 10 -6 sccs
ACCEPTANCE TEST	All flight assemblies shall undergo leak and proof pressure testing. Additional service valves in the PMA allow for isolated proof and leak testing of the high pressure systems

TABLE 4. XENON/KRYPTON PSMA SUMMARY (CONTINUED)

PROPELLANT TANK

Astra has teamed with an established space hardware manufacturer for heritage xenon/krypton propellant tanks.

TANK CONSTRUCTION	COTS composite overwrap pressure vessel (COPV) with aluminum liner
МЕОР	2,700 psia at 60 °C for Xe; 4,000 psia at 60 °C for Kr
PROOF PRESSURE	1.5 x MEOP
BURST PRESSURE	2.0 x MEOP
QUALIFICATION TEST	Both burst and proof pressure shall be verified during qualification testing
ACCEPTANCE TEST	All flight tanks shall undergo proof pressure testing prior to delivery
RANGE SAFETY	All flight tanks shall be proof tested to meet range safety requirements
HERITAGE	COPV family has flight heritage

 TABLE 5.
 XENON/KRYPTON PROPELLANT TANK SUMMARY

ELECTRICAL

FULL POWER INPUT TO PPU	400 W
INPUT VOLTAGE	28 VDC unregulated
PPU EFFICIENCY	95%
COMMUNICATION INTERFACE	RS 485
COMPONENT DERATING STANDARD	ECSS-Q-ST-30-11
ESD CONTROL STANDARD	ECSS-Q-ST-60-14C
ELECTRONICS RELIABILITY METHODOLOGY	FIDES2009

 TABLE 6.
 ELECTRICAL SUMMARY

RADIATION

RADIATION TOLERANCE APPROACH	Power electronics designed with the goal of reducing active components
TOTAL IONIZING DOSE	>25 kRad target for parts level testing
SINGLE EVENT EFFECTS	>37 MeV.cm^2/mg target for Destructive SEEs

TABLE 7. RADIATION APPROACH

THERMAL

OPERATING TEMPERATURE	-20 to +60 C
ACCEPTANCE TEST TEMPERATURE	-25 to +65 C
QUALIFICATION/SURVIVABLE TEST TEMPERATURE	-30 to +70 C
POWER DISSIPATION	Target is 4 W from the thruster and 20 W from the PPU
PROPELLANT TANK THERMAL CONTROL	Use of xenon or krypton propellant may require heaters for the tank and propellant feed lines. These heaters are not included in the ASE subsystem and will be unique to each spacecraft configuration. The PPU does not support thermal control of the tank, which will have to be provided by the satellite bus.
TABLE 8. THERMAL SUMMARY	

MECHANICAL

VOLUME REQUIREMENTS	CAD files are available on request
TOTAL DRY MASS	7.6 kg (example single string krypton configuration with 3 L tank)

TABLE 9. MECHANICAL SUMMARY